3.1.71 \(\int \frac {d+e x^2+f x^4}{(a+b x^2+c x^4)^2} \, dx\) [71]

3.1.71.1 Optimal result
3.1.71.2 Mathematica [A] (verified)
3.1.71.3 Rubi [A] (verified)
3.1.71.4 Maple [C] (verified)
3.1.71.5 Fricas [B] (verification not implemented)
3.1.71.6 Sympy [F(-1)]
3.1.71.7 Maxima [F]
3.1.71.8 Giac [B] (verification not implemented)
3.1.71.9 Mupad [B] (verification not implemented)

3.1.71.1 Optimal result

Integrand size = 27, antiderivative size = 346 \[ \int \frac {d+e x^2+f x^4}{\left (a+b x^2+c x^4\right )^2} \, dx=\frac {x \left (b^2 d-a b e-2 a (c d-a f)+(b c d-2 a c e+a b f) x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\left (b c d-2 a c e+a b f+\frac {4 a b c e+b^2 (c d-a f)-4 a c (3 c d+a f)}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \sqrt {c} \left (b^2-4 a c\right ) \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (b c d-2 a c e+a b f-\frac {4 a b c e+b^2 (c d-a f)-4 a c (3 c d+a f)}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \sqrt {c} \left (b^2-4 a c\right ) \sqrt {b+\sqrt {b^2-4 a c}}} \]

output
1/2*x*(b^2*d-a*b*e-2*a*(-a*f+c*d)+(a*b*f-2*a*c*e+b*c*d)*x^2)/a/(-4*a*c+b^2 
)/(c*x^4+b*x^2+a)+1/4*arctan(x*2^(1/2)*c^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2 
))*(b*c*d-2*a*c*e+a*b*f+(4*a*b*c*e+b^2*(-a*f+c*d)-4*a*c*(a*f+3*c*d))/(-4*a 
*c+b^2)^(1/2))/a/(-4*a*c+b^2)*2^(1/2)/c^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2) 
+1/4*arctan(x*2^(1/2)*c^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2))*(b*c*d-2*a*c*e 
+a*b*f+(-4*a*b*c*e-b^2*(-a*f+c*d)+4*a*c*(a*f+3*c*d))/(-4*a*c+b^2)^(1/2))/a 
/(-4*a*c+b^2)*2^(1/2)/c^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2)
 
3.1.71.2 Mathematica [A] (verified)

Time = 0.65 (sec) , antiderivative size = 382, normalized size of antiderivative = 1.10 \[ \int \frac {d+e x^2+f x^4}{\left (a+b x^2+c x^4\right )^2} \, dx=\frac {\frac {2 x \left (b^2 d+b \left (-a e+c d x^2+a f x^2\right )+2 a \left (a f-c \left (d+e x^2\right )\right )\right )}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {2} \left (b^2 (c d-a f)-2 a c \left (6 c d+\sqrt {b^2-4 a c} e+2 a f\right )+b \left (c \sqrt {b^2-4 a c} d+4 a c e+a \sqrt {b^2-4 a c} f\right )\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {c} \left (b^2-4 a c\right )^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {2} \left (b^2 (-c d+a f)+2 a c \left (6 c d-\sqrt {b^2-4 a c} e+2 a f\right )+b \left (c \sqrt {b^2-4 a c} d-4 a c e+a \sqrt {b^2-4 a c} f\right )\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {c} \left (b^2-4 a c\right )^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}}{4 a} \]

input
Integrate[(d + e*x^2 + f*x^4)/(a + b*x^2 + c*x^4)^2,x]
 
output
((2*x*(b^2*d + b*(-(a*e) + c*d*x^2 + a*f*x^2) + 2*a*(a*f - c*(d + e*x^2))) 
)/((b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + (Sqrt[2]*(b^2*(c*d - a*f) - 2*a*c* 
(6*c*d + Sqrt[b^2 - 4*a*c]*e + 2*a*f) + b*(c*Sqrt[b^2 - 4*a*c]*d + 4*a*c*e 
 + a*Sqrt[b^2 - 4*a*c]*f))*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 
4*a*c]]])/(Sqrt[c]*(b^2 - 4*a*c)^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sqr 
t[2]*(b^2*(-(c*d) + a*f) + 2*a*c*(6*c*d - Sqrt[b^2 - 4*a*c]*e + 2*a*f) + b 
*(c*Sqrt[b^2 - 4*a*c]*d - 4*a*c*e + a*Sqrt[b^2 - 4*a*c]*f))*ArcTan[(Sqrt[2 
]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[c]*(b^2 - 4*a*c)^(3/2)*Sq 
rt[b + Sqrt[b^2 - 4*a*c]]))/(4*a)
 
3.1.71.3 Rubi [A] (verified)

Time = 0.64 (sec) , antiderivative size = 332, normalized size of antiderivative = 0.96, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {2206, 25, 1480, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {d+e x^2+f x^4}{\left (a+b x^2+c x^4\right )^2} \, dx\)

\(\Big \downarrow \) 2206

\(\displaystyle \frac {x \left (x^2 (a b f-2 a c e+b c d)-a b e-2 a (c d-a f)+b^2 d\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\int -\frac {d b^2+a e b+(b c d-2 a c e+a b f) x^2-2 a (3 c d+a f)}{c x^4+b x^2+a}dx}{2 a \left (b^2-4 a c\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {d b^2+a e b+(b c d-2 a c e+a b f) x^2-2 a (3 c d+a f)}{c x^4+b x^2+a}dx}{2 a \left (b^2-4 a c\right )}+\frac {x \left (x^2 (a b f-2 a c e+b c d)-a b e-2 a (c d-a f)+b^2 d\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\)

\(\Big \downarrow \) 1480

\(\displaystyle \frac {\frac {1}{2} \left (\frac {b^2 (c d-a f)+4 a b c e-4 a c (a f+3 c d)}{\sqrt {b^2-4 a c}}+a b f-2 a c e+b c d\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b-\sqrt {b^2-4 a c}\right )}dx+\frac {1}{2} \left (-\frac {b^2 (c d-a f)+4 a b c e-4 a c (a f+3 c d)}{\sqrt {b^2-4 a c}}+a b f-2 a c e+b c d\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b+\sqrt {b^2-4 a c}\right )}dx}{2 a \left (b^2-4 a c\right )}+\frac {x \left (x^2 (a b f-2 a c e+b c d)-a b e-2 a (c d-a f)+b^2 d\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right ) \left (\frac {b^2 (c d-a f)+4 a b c e-4 a c (a f+3 c d)}{\sqrt {b^2-4 a c}}+a b f-2 a c e+b c d\right )}{\sqrt {2} \sqrt {c} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right ) \left (-\frac {b^2 (c d-a f)+4 a b c e-4 a c (a f+3 c d)}{\sqrt {b^2-4 a c}}+a b f-2 a c e+b c d\right )}{\sqrt {2} \sqrt {c} \sqrt {\sqrt {b^2-4 a c}+b}}}{2 a \left (b^2-4 a c\right )}+\frac {x \left (x^2 (a b f-2 a c e+b c d)-a b e-2 a (c d-a f)+b^2 d\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\)

input
Int[(d + e*x^2 + f*x^4)/(a + b*x^2 + c*x^4)^2,x]
 
output
(x*(b^2*d - a*b*e - 2*a*(c*d - a*f) + (b*c*d - 2*a*c*e + a*b*f)*x^2))/(2*a 
*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + (((b*c*d - 2*a*c*e + a*b*f + (4*a*b* 
c*e + b^2*(c*d - a*f) - 4*a*c*(3*c*d + a*f))/Sqrt[b^2 - 4*a*c])*ArcTan[(Sq 
rt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[c]*Sqrt[b - S 
qrt[b^2 - 4*a*c]]) + ((b*c*d - 2*a*c*e + a*b*f - (4*a*b*c*e + b^2*(c*d - a 
*f) - 4*a*c*(3*c*d + a*f))/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/S 
qrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[c]*Sqrt[b + Sqrt[b^2 - 4*a*c]]) 
)/(2*a*(b^2 - 4*a*c))
 

3.1.71.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 2206
Int[(Px_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{d = 
 Coeff[PolynomialRemainder[Px, a + b*x^2 + c*x^4, x], x, 0], e = Coeff[Poly 
nomialRemainder[Px, a + b*x^2 + c*x^4, x], x, 2]}, Simp[x*(a + b*x^2 + c*x^ 
4)^(p + 1)*((a*b*e - d*(b^2 - 2*a*c) - c*(b*d - 2*a*e)*x^2)/(2*a*(p + 1)*(b 
^2 - 4*a*c))), x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a*c))   Int[(a + b*x^2 + c 
*x^4)^(p + 1)*ExpandToSum[2*a*(p + 1)*(b^2 - 4*a*c)*PolynomialQuotient[Px, 
a + b*x^2 + c*x^4, x] + b^2*d*(2*p + 3) - 2*a*c*d*(4*p + 5) - a*b*e + c*(4* 
p + 7)*(b*d - 2*a*e)*x^2, x], x], x]] /; FreeQ[{a, b, c}, x] && PolyQ[Px, x 
^2] && Expon[Px, x^2] > 1 && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1]
 
3.1.71.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.12 (sec) , antiderivative size = 200, normalized size of antiderivative = 0.58

method result size
risch \(\frac {-\frac {\left (a b f -2 a c e +b c d \right ) x^{3}}{2 a \left (4 a c -b^{2}\right )}-\frac {\left (2 f \,a^{2}-a b e -2 a c d +b^{2} d \right ) x}{2 a \left (4 a c -b^{2}\right )}}{c \,x^{4}+b \,x^{2}+a}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\left (-\frac {\left (a b f -2 a c e +b c d \right ) \textit {\_R}^{2}}{4 a c -b^{2}}+\frac {2 f \,a^{2}-a b e +6 a c d -b^{2} d}{4 a c -b^{2}}\right ) \ln \left (x -\textit {\_R} \right )}{2 c \,\textit {\_R}^{3}+\textit {\_R} b}}{4 a}\) \(200\)
default \(\frac {-\frac {\left (a b f -2 a c e +b c d \right ) x^{3}}{2 a \left (4 a c -b^{2}\right )}-\frac {\left (2 f \,a^{2}-a b e -2 a c d +b^{2} d \right ) x}{2 a \left (4 a c -b^{2}\right )}}{c \,x^{4}+b \,x^{2}+a}+\frac {2 c \left (\frac {\left (-\sqrt {-4 a c +b^{2}}\, a b f +2 a c e \sqrt {-4 a c +b^{2}}-b c d \sqrt {-4 a c +b^{2}}-4 a^{2} c f -a \,b^{2} f +4 a b c e -12 a \,c^{2} d +b^{2} c d \right ) \sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{8 \sqrt {-4 a c +b^{2}}\, c \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}-\frac {\left (-\sqrt {-4 a c +b^{2}}\, a b f +2 a c e \sqrt {-4 a c +b^{2}}-b c d \sqrt {-4 a c +b^{2}}+4 a^{2} c f +a \,b^{2} f -4 a b c e +12 a \,c^{2} d -b^{2} c d \right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{8 \sqrt {-4 a c +b^{2}}\, c \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{a \left (4 a c -b^{2}\right )}\) \(387\)

input
int((f*x^4+e*x^2+d)/(c*x^4+b*x^2+a)^2,x,method=_RETURNVERBOSE)
 
output
(-1/2/a*(a*b*f-2*a*c*e+b*c*d)/(4*a*c-b^2)*x^3-1/2*(2*a^2*f-a*b*e-2*a*c*d+b 
^2*d)/a/(4*a*c-b^2)*x)/(c*x^4+b*x^2+a)+1/4/a*sum((-(a*b*f-2*a*c*e+b*c*d)/( 
4*a*c-b^2)*_R^2+(2*a^2*f-a*b*e+6*a*c*d-b^2*d)/(4*a*c-b^2))/(2*_R^3*c+_R*b) 
*ln(x-_R),_R=RootOf(_Z^4*c+_Z^2*b+a))
 
3.1.71.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 8991 vs. \(2 (304) = 608\).

Time = 11.61 (sec) , antiderivative size = 8991, normalized size of antiderivative = 25.99 \[ \int \frac {d+e x^2+f x^4}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \]

input
integrate((f*x^4+e*x^2+d)/(c*x^4+b*x^2+a)^2,x, algorithm="fricas")
 
output
Too large to include
 
3.1.71.6 Sympy [F(-1)]

Timed out. \[ \int \frac {d+e x^2+f x^4}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Timed out} \]

input
integrate((f*x**4+e*x**2+d)/(c*x**4+b*x**2+a)**2,x)
 
output
Timed out
 
3.1.71.7 Maxima [F]

\[ \int \frac {d+e x^2+f x^4}{\left (a+b x^2+c x^4\right )^2} \, dx=\int { \frac {f x^{4} + e x^{2} + d}{{\left (c x^{4} + b x^{2} + a\right )}^{2}} \,d x } \]

input
integrate((f*x^4+e*x^2+d)/(c*x^4+b*x^2+a)^2,x, algorithm="maxima")
 
output
1/2*((b*c*d - 2*a*c*e + a*b*f)*x^3 - (a*b*e - 2*a^2*f - (b^2 - 2*a*c)*d)*x 
)/((a*b^2*c - 4*a^2*c^2)*x^4 + a^2*b^2 - 4*a^3*c + (a*b^3 - 4*a^2*b*c)*x^2 
) + 1/2*integrate((a*b*e - 2*a^2*f + (b*c*d - 2*a*c*e + a*b*f)*x^2 + (b^2 
- 6*a*c)*d)/(c*x^4 + b*x^2 + a), x)/(a*b^2 - 4*a^2*c)
 
3.1.71.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 6348 vs. \(2 (304) = 608\).

Time = 1.29 (sec) , antiderivative size = 6348, normalized size of antiderivative = 18.35 \[ \int \frac {d+e x^2+f x^4}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \]

input
integrate((f*x^4+e*x^2+d)/(c*x^4+b*x^2+a)^2,x, algorithm="giac")
 
output
1/2*(b*c*d*x^3 - 2*a*c*e*x^3 + a*b*f*x^3 + b^2*d*x - 2*a*c*d*x - a*b*e*x + 
 2*a^2*f*x)/((c*x^4 + b*x^2 + a)*(a*b^2 - 4*a^2*c)) - 1/16*((2*b^3*c^3 - 8 
*a*b*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3*c 
 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c^2 + 2 
*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^2*c^2 - sqrt( 
2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b*c^3 - 2*(b^2 - 4*a* 
c)*b*c^3)*(a*b^2 - 4*a^2*c)^2*d - 2*(2*a*b^2*c^3 - 8*a^2*c^4 - sqrt(2)*sqr 
t(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2*c + 4*sqrt(2)*sqrt(b^ 
2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*c^2 + 2*sqrt(2)*sqrt(b^2 - 
4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c) 
*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*c^3 - 2*(b^2 - 4*a*c)*a*c^3)*(a*b^2 - 4 
*a^2*c)^2*e + (2*a*b^3*c^2 - 8*a^2*b*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt( 
b*c + sqrt(b^2 - 4*a*c)*c)*a*b^3 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + 
sqrt(b^2 - 4*a*c)*c)*a^2*b*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt 
(b^2 - 4*a*c)*c)*a*b^2*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 
 4*a*c)*c)*a*b*c^2 - 2*(b^2 - 4*a*c)*a*b*c^2)*(a*b^2 - 4*a^2*c)^2*f - 2*(s 
qrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^6*c - 14*sqrt(2)*sqrt(b*c + sqr 
t(b^2 - 4*a*c)*c)*a^2*b^4*c^2 - 2*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)* 
a*b^5*c^2 - 2*a*b^6*c^2 + 64*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b 
^2*c^3 + 20*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^3*c^3 + sqrt(...
 
3.1.71.9 Mupad [B] (verification not implemented)

Time = 12.16 (sec) , antiderivative size = 19589, normalized size of antiderivative = 56.62 \[ \int \frac {d+e x^2+f x^4}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \]

input
int((d + e*x^2 + f*x^4)/(a + b*x^2 + c*x^4)^2,x)
 
output
atan(((((6144*a^5*c^6*d + 2048*a^6*c^5*f - 288*a^2*b^6*c^3*d + 1920*a^3*b^ 
4*c^4*d - 5632*a^4*b^2*c^5*d + 16*a^2*b^7*c^2*e - 192*a^3*b^5*c^3*e + 768* 
a^4*b^3*c^4*e - 32*a^3*b^6*c^2*f + 384*a^4*b^4*c^3*f - 1536*a^5*b^2*c^4*f 
+ 16*a*b^8*c^2*d - 1024*a^5*b*c^5*e)/(8*(a^2*b^6 - 64*a^5*c^3 - 12*a^3*b^4 
*c + 48*a^4*b^2*c^2)) - (x*((27*a*b^9*c^2*d^2 - a^3*b^9*f^2 - a^3*f^2*(-(4 
*a*c - b^2)^9)^(1/2) - b^11*c*d^2 + 3840*a^5*b*c^6*d^2 - 9*a*c^2*d^2*(-(4* 
a*c - b^2)^9)^(1/2) - a^2*b^9*c*e^2 + 768*a^6*b*c^5*e^2 + a^2*c*e^2*(-(4*a 
*c - b^2)^9)^(1/2) + b^2*c*d^2*(-(4*a*c - b^2)^9)^(1/2) + 768*a^7*b*c^4*f^ 
2 - 288*a^2*b^7*c^3*d^2 + 1504*a^3*b^5*c^4*d^2 - 3840*a^4*b^3*c^5*d^2 + 96 
*a^4*b^5*c^3*e^2 - 512*a^5*b^3*c^4*e^2 + 96*a^5*b^5*c^2*f^2 - 512*a^6*b^3* 
c^3*f^2 - 3072*a^6*c^6*d*e - 1024*a^7*c^5*e*f + 6*a^2*b^9*c*d*f + 3584*a^6 
*b*c^5*d*f - 6*a^2*c*d*f*(-(4*a*c - b^2)^9)^(1/2) + 12*a^3*b^8*c*e*f + 36* 
a^2*b^8*c^2*d*e - 192*a^3*b^6*c^3*d*e + 128*a^4*b^4*c^4*d*e + 1536*a^5*b^2 
*c^5*d*e - 128*a^3*b^7*c^2*d*f + 960*a^4*b^5*c^3*d*f - 3072*a^5*b^3*c^4*d* 
f - 128*a^4*b^6*c^2*e*f + 384*a^5*b^4*c^3*e*f - 2*a*b^10*c*d*e + 2*a*b*c*d 
*e*(-(4*a*c - b^2)^9)^(1/2))/(32*(4096*a^9*c^7 + a^3*b^12*c - 24*a^4*b^10* 
c^2 + 240*a^5*b^8*c^3 - 1280*a^6*b^6*c^4 + 3840*a^7*b^4*c^5 - 6144*a^8*b^2 
*c^6)))^(1/2)*(1024*a^5*b*c^5 - 16*a^2*b^7*c^2 + 192*a^3*b^5*c^3 - 768*a^4 
*b^3*c^4))/(2*(a^2*b^4 + 16*a^4*c^2 - 8*a^3*b^2*c)))*((27*a*b^9*c^2*d^2 - 
a^3*b^9*f^2 - a^3*f^2*(-(4*a*c - b^2)^9)^(1/2) - b^11*c*d^2 + 3840*a^5*...